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Theoretical calculations of the thermal expansion coefficients of the solder alloy systems Sn–Pb and Sn–Ag

were attempted by using a cluster expansion method. Five ordered fcc phases for each system were employed

to perform the matrix inversion and to determine the correlation coefficients in cluster expansion formalism.

The coefficients of thermal expansion of the ordered alloys were obtained through first-principles electronic

structure calculations coupled with a Debye treatment of the vibrating lattice. The correlation functions for

disordered alloys were derived through Monte-Carlo simulations. The calculated results are in very good

agreement with experiments, indicating the feasibility of using cluster expansion theory for thermal expansion

coefficient calculations. This study may provide a simple approach to estimating thermal expansion coefficients

of disordered structures.

1. Introduction

In the microelectronics industry, solder alloy plays an
important role as a joint material. It provides the electrical
and mechanical connection between a silicon die and the
bonding pad.1 Therefore, the performance and quality of
solder are crucial to the overall functioning of the assembly.
Sn–Pb solder alloys, which are well developed with many years
of experience, are commonly used in electronic packaging due
to their unique combination of electrical, chemical, physical,
thermal and mechanical properties.1 However, the use of Pb
will be banned due to environmental considerations, and the
search for suitable lead-free solders has become an important
issue for the electronics industry.
In the search for a ‘‘drop in’’ alternative to the Sn–Pb

solders, some performance specifications, such as the melting
temperature, surface tension and thermal expansion coefficient,
must be met. Estimation of melting temperature has been
extensively reported by thermodynamic calculations of phase
equilibria in multi-component systems.2-5 Theoretical investi-
gations on the surface tension of Sn-based alloys have also been
attempted,6-7 and these have led to simple methods for surface
tension prediction. However, no theoretical calculations of
coefficients of thermal expansion (hereafter CTE) have been
performed so far, due to the disordered structure of solder
alloys. In addition, even for ordered structures, theoretical
calculations of CTEs, by methods such as phonon dispersion
curve calcu- lations8 and ab initio constant pressure
dynamics,9 as well as ab initio lattice dynamics in the quasi-
harmonic approximation,10-11 still remain challenging. Hence,
it is desirable to develop a simple but reliable CTE calculational
approach that can be applied to disordered systems. With this
in mind, an attempt is made in this paper to explore the
possibility of CTE calculations for solder alloys by using the
cluster expansion method, which has been well developed and
extensively used in phase stability calculations.12-18

2. Cluster expansion method

The basic idea of the cluster expansion method is that any
quantity (Q), which is related to atomic configuration, can be

expanded as the sum of terms which involves the series of
correlation functions19

Q~
X
n

qnjn (1)

where qn is the coefficient of correlation functions, and is
assumed to be transferable from one phase to another once the
alloy system is fixed. jn is the multisite correlation function for
the subcluster ( n ~ 0 refers to empty, n~ 1 to point, n ~ 2 to
pair, n ~ 3 to triangle clusters etc.), and is defined as follows:

jn~
1

Nn

X
pi

sp1sp2 . . . spn (2)

where spn is a spin-like operator that takes the value of 11 or
21, depending on whether the lattice point p is occupied by an
A or B atom.Nn is the total number of lattice subset-like points,
pairs, triangles, tetrahedrons in a crystal, in which n equals 1, 2,
3, 4, ..., respectively.
Suppose quantity Q is the thermal expansion coefficient (a).

If qn and jn are known, eqn. (1) can be applied to obtain a.
For qn, there are several ways to derive it, and the simplest
one is to use a method due to Connolly and Williams.20

In Connolly and Williams’s scheme, it is assumed that only
those clusters consisting of entirely nearest neighbors are
important, so that the cluster sum of eqn. (1) is truncated at
the fourth order, i.e. there are five qn (n ~ 0, 1, 2, 3, 4) terms
to be determined. Five ordered compounds with easily derived
correlation functions were employed and inverted to derive
the five coefficients terms. The derived coefficient terms then
can be applied to the disordered alloy of the same system. For
jn, it can be derived through either the cluster variation method
or Monte-Carlo simulation,21 and the latter is used in this
study.
In the work which follows, we attempt the cluster expansion

method of CTE calculations for Sn–Pb and Sn–Ag systems.
To apply the cluster expansion method, the CTEs of the
following five ordered phases are used to derive the correlation
coefficient qn: A(fcc), B(fcc), AB in the L10 structure (AuCu)
and A3B, AB3 in the L12 structure (Cu3Au). Here A and B
represent Sn and Pb(Ag), respectively. For pure metals (A and
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B), the experimental CTE data22 are readily available, and
therefore we use them directly. For the other three ordered
phases AB, A3B, AB3, we obtain the CTE from first principles
electronic structure calculations coupled with a Debye treat-
ment of the vibrating lattice since their experimental data are
not available.

3. Results and discussions

3.1 Thermal expansion coefficient for Sn–Pb system

3.1.1 Theoretical calculation of CTEs for three ordered
alloys. To derive the CTEs for SnPb(L10), Sn3Pb(L12),
SnPb3(L12), Morruzi, Janak and Schwarz’s scheme23 was
adopted. This approach is applicable to cubic metals and has
been applied to alloys by Mohri.17

The CASTEP program, as implemented with MSI’s
CERIUS224 package, was employed for the electronic structure
calculation. The generalized gradient approximation (GGA)
of exchange-correlation function to density functional theory
is used to obtain the static energy. The pseudopotentials used
are in Kleinman–Bylander separable form and are norm-
conserving. The summation over the Brillouin zone (BZ) is
performed on a 6 6 6 6 6 Monkhorst–Pack k-point mesh,
which results in 18 k-points in the irreducible part of the
Brillouin zone. A binding energy curve is obtained by fitting the
static energy of volume per atom E(r) and r into a Morse
functional form

E(r)~A{2De{l(r{r0)zDe{2l(r{r0) (3)

where A is a fitting parameter, D is the depth of the potential
well, l is the inverse line width of the potential and r is the
Wigner–Seitz atomic radius, which is related to the volume per
atom (V) by the relation V ~ (4p/3)r3. For the compound we
use an average of the Wigner–Seitz radii of each element. The
energy points on the binding curve are obtained by a spanning
variable r, in the range of ¡10% of the equilibrium Wigner–
Seitz atomic radius (r0).
Table 1 shows the results of a non-linear least square fit to

the Morse function of eqn. (3) for the system considered. The
theoretical bulk modulus B, Debye temperature qD0, and
Grüneisen constant c, are determined within the Debye–
Grüneisen approximation following the method of ref.23.
In the Debye–Grüneisen approximation, the free energy is
given by

F(r,T)~
9

8
kBhDzE(r){kBT ½D(qD=T){3 ln (1{e

{
qD
T )� (4)

where kB is Boltzmann’s constant and D(qD/T) is the Debye
function.
The calculated binding curve for the rigid lattice together

with the Debye temperatures and the Grüneisen constant
enable the calculation of the free energy of eqn. (4). A
subsequent Morse fit at finite temperature can yield values of
r0(T) and the coefficient of thermal expansion (a) can be
calculated with

a(T)~
1

r0
(
dr0

dT
) (5)

Table 1 shows that the calculated thermal expansion coeffi-
cients (a) as well as the bulk modulus (B), Debye temperature
(qD) and Grüneisen constant (c) under room temperature
(293 K).

3.1.2 Determination of correlation coefficient term qn. For
the five ordered alloys, the correlation function jn (shown in
Table 215) can be easily derived from eqn. (2). The largest
cluster in the present case is a tetrahedron formed by nearest-
neighbor sites. In the tetrahedron approximation, eqn (1) can
be expanded as:

a(m)~q0zq1j1zq2j2zq3j3zq4j4 (6)

where m indexes the different phases to be used in obtaining qn:
here it represents Sn(fcc), Pb(fcc), SnPb(L10), Sn3Pb(L12) and
SnPb3(L12), respectively. a(m) is the thermal expansion
coefficient for the corresponding phase. The series of eqn. (6)
for five different phases can be solved for the five different
coefficients qn by matrix inversion.

qn~
X
m

fjig{1.a(m) (7)

The matrix description of eqn. (7) is:

q0

q1

q2

q3

q4

2
6666664

3
7777775
~

jSn0 jSn1 jSn2 jSn3 jSn4

jSn3Pb0 jSn3Pb1 jSn3Pb2 jSn3Pb3 jSn3Pb4

jSnPb0 jSnPb1 jSnPb2 jSnPb3 jSnPb4

jSnPb30 jSnPb31 jSnPb32 jSnPb33 jSnPb34

jPb0 jPb1 jPb2 jPb3 jPb4

2
66666664

3
77777775

{1
a(Sn)

a(Sn3Pb)

a(SnPb)

a(SnPb3)

a(Ag)

2
6666664

3
7777775
(8)

Combining the data of Table 1 (CTE data of last row), the data
of Table 2 as well as the experimental CTE of Sn and Pb, which
are 23.8 6 1026 K21 22 and 29.1 6 1026 K21,22 respectively,
the correlation coefficient terms are calculated through eqn. (8)
and are listed in Table 3.
As mentioned earlier, the idea of the cluster expansion

method is that the coefficient term derived from the ordered
compound is applicable for any configuration, i.e., for both
ordered and disordered alloys. Therefore, the above coefficient
terms can be used to calculate thermal expansion coefficients of
disordered alloys once their correlation functions are deter-
mined.

3.1.3 Determination of correlation functions for disordered
alloys by Monte-Carlo simulation. For the Sn–Pb system, one
alloy composition we choose to study was Sn–37%Pb, this
being a typical solder composition. As has been described, the

Table 1 Morse parameters of Sn3Pb(L12), SnPb (L10) and SnPb3(L12)
and theoretical thermal expansion coefficients at 293 K

Sn3Pb SnPb SnPb3

r0/au 3.4507 3.5349 3.6643
l/au21 1.2234 1.2046 1.1515
A/Ry 235.78 264.37 293.43
D/Ry 0.191 0.168 0.137
B/kbar 646.41 539.65 386.02
qD/K 157.0 145.2 125.0
c 2.111 2.129 2.109
a 6 1026/K 18.2061 20.6834 26.2250

Table 2 Correlation functions for Sn(fcc), Sn3Pb(L12), SnPb(L10),
SnPb3(L12) and Pb(fcc)

Phase j0 j1 j2 j3 j4

Sn(fcc) 1 1 1 1 1
Sn3Pb(L12) 1 1/2 0 21/2 21
SnPb(L10) 1 0 21/3 0 1
SnPb3(L12) 1 21/2 0 1/2 21
Pb(fcc) 1 21 1 21 1

Table 3 Calculated coefficient terms for Sn–Pb system

q0 6 1026 22.1705
q1 6 1026 25.33475
q2 6 1026 4.32495
q3 6 1026 2.68475
q4 6 1026 20.0454
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computation of the CTE for a disordered alloy is based
on a cluster expansion of a set of ordered alloys. The particular
choice of using several ordered alloys to perform matrix
inversion may be regarded as a source of imprecision. It is
therefore worthwhile to evaluate the accuracy of the inversion
computation. With this aim, we used one more alloy with a
composition of Sn–95%Pb in the Sn–Pb system for testing,
since the experimental CTE of this composition is available.
To determine the correlation functions for the above two

disordered alloys, we simulate a different fcc lattice with a
200*200*200 cell, using periodic boundary conditions. The
total number of atoms is 4060301. For simulating the
interdiffusion of atoms, Kawasaki (spin exchange) dynamics21

are applied, i.e. the exchange of pairs of neighboring Pb and Sn
atoms in accordance with the algorithm of Metropolis et al.21

The goal of the simulation is to produce a series of atomic
configurations such that the probability of a configuration
being generated is proportional to the probability of the
configuration occurring in the statistical ensemble. This is
achieved through numerous repetitions of the following cycle.
One starts with an initial atomic configuration. The state is then
perturbed, by flipping the sign of the atoms to produce a new
configuration. The interaction energy of the near neighbor
pairs, which is needed for calculation of the energy of the
different state, is determined by density functional theory
calculations. If the energy of the new configuration, Enew, is
smaller than the energy of the old configuration, Eold,
transition occurs with probability 1. Otherwise, the transition
probability is equal to e(2DE/kBT). Here, DE is the energy
difference between two configurations, kB is the Boltzman
constant and T is the absolute temperature. A random number,
w, is generated between 0 and 1 and if w v e (2DE/kBT), a tran-
sition is made, i.e. the new state is accepted. If w w e (2DE/KT),
no transition is made. In order to achieve a fully equilibrated
state, each simulation runs up to 6 6 106 Monte-Carlo steps.
After sufficient Monte-Carlo iterations, correlation functions
for the disordered alloys Sn–37%Pb and Sn–95%Pb were
calculated according to eqn. (2) and are listed in Table 4.

3.1.4 Thermal expansion coefficients for Sn–37%Pb and
Sn–95%Pb. Once the correlation function and correlation
coefficients are determined, the thermal expansion coefficient
can be easily calculated with eqn. (6). The calculated CTEs
for Sn–37%Pb and Sn–95%Pb are 20.5733 6 1026 K21 and
28.5479 6 1026 K21, respectively. On comparing these with
the experimental CTEs for Sn–37%Pb (21.06 1026 K2125) and
Sn–95%Pb (29.061026 K2126), it is obvious that excellent
agreement is obtained, indicating the feasibility of using
cluster expansion theory for CTE calculations on disordered
alloys.

3.2 Thermal expansion coefficients for the Sn–Ag system

To further validate the general applicability of the cluster
expansion of CTEs, we extend the method to the lead-free
system Sn–Ag, due to the following considerations: (1) Sn–Ag
is regarded as one of the most promising systems for new
lead-free solder alloys, (2) we can use it to demonstrate an

easy-to-apply approach for predicting CTEs of designed lead-
free solder alloys.
In the Sn–Ag system, experimental CTEs for Sn–3.5Ag%

and Sn–90%Ag alloys are available. Hence, we chose these two
compositions to study. The procedure for calculating the
theoretical CTEs for SnAg, Sn3Ag and SnAg3 is the same as
that described in 3.1.1. Table 5 lists the calculated Morse
parameters as well as the thermal expansion coefficients under
room temperature (293 K).
To derive the correlation coefficient term qn for the Sn–Ag

system, the correlation functions shown in Table 2 can be
applied to Sn–Ag ordered alloys since these values are
dependent on the atomic configurations but not on the
system. The experimental CTE of Ag which is 19.0 6 1026

K21according to ref. 25 is used for the matrix inversion. By
inserting the CTEs of five ordered alloys (Sn, Sn3Ag, SnAg,
SnAg3 Ag) and the correlation functions of Table 2 into eqn.
(1), the correlation coefficient terms qn for the Sn–Ag system
are derived and are listed in Table 6.
The correlation functions of the disordered alloys Sn–

3.5%Ag and Sn–90%Ag are generated through Monte-Carlo
simulation and are shown in Table 7. With the obtained
coefficient terms and the correlation functions, the calculated
CTEs of Sn–3.5%Ag and Sn–90%Ag are 23.2466 6 1026 K21

and 19.9577 6 1026 K21 corresponding to Sn–3.5%Ag and
Sn–90%Ag, respectively. Comparing with experiment, which
is 22.0 6 1026 K2127 for Sn–3.5Ag and 20.0 6 1026 K2128

for Sn–90%Ag, it can be seen that very good agreement is
obtained, demonstrating the success of extending the model
to lead-free solder alloys.

4. Conclusions

In this study, we explored the possibility of applying cluster
expansion theory for CTE calculation of solder alloys. The
exploration was started with currently used Sn–Pb solder
compositions, and then extended to the potential lead-free
solder composition Sn–Ag in order to further validate the

Table 4 Correlation functions for Sn–37%Pb and Sn–95%Pb by using
Monte-Carlo simulations

Sn-37%Pb Sn-95%Pb

j0 1 1
j1 0.26 20.9
j2 20.013343 0.815676
j3 20.058374 20.738271
j4 20.0194567 0.669935

Table 5 Morse parameters for Sn3Ag (L12), SnAg (L10) and SnAg3
(L12) and theoretical thermal expansion coefficients at 293 K

Sn3Ag SnAg SnAg3

r0/au 3.2905 3.1581 3.0740
l/au21 1.3859 1.3618 1.7785
A/Ry 224.12 241.22 258.56
D/Ry 0.165 0.201 0.126
B/kbar 751.29 921.19 1009.37
qD/K 194.6 211.1 217.8
c 2.280 2.150 2.734
a 6 1026/K 19.8250 16.9369 22.0927

Table 6 Calculated coefficients terms for the Sn–Ag system

1026q0 19.5058
1026q1 0.06615
1026q2 3.34732
1026q3 2.33385
1026q4 21.45309

Table 7 Correlation functions for disordered alloys Sn–3.5%Ag and
Sn–90%Ag by Monte-Carlo simulation

Sn–3.5Ag%Pb Sn–90%Ag

j0 1 1
j1 0.93 20.9
j2 0.861991 0.627889
j3 0.795776 20.473469
j4 0.731731 0.338508
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general applicability of the cluster expansion approach to
CTE calculations. Five ordered phases in each system were
considered to perform the cluster expansion. CTEs of ordered
phases from experiments or theoretical prediction were
employed to derive the correlation coefficients for disordered
alloys. Monte-Carlo simulations were carried out to determine
the correlation functions for the disordered alloys. With the
derived correlation coefficients and correlation functions, the
CTEs of Sn–37%Pb, Sn–95%Pb, Sn–3.5%Ag and Sn–90%Ag
were calculated. Comparing with experiment, very good
agreement was obtained, indicating the feasibility of using
the cluster expansion approach for CTE calculation. As far as
we know, this is the first example of using cluster expansion
theory for CTE calculations. This study may provide an
interesting approach to predicting CTEs of disordered
structures.
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